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ABSTRACT 
Time-series forecasting contributes crucial information to industrial 
and institutional decision-making with multivariate time-series in-
put. Although various models have been developed to facilitate the 
forecasting process, they make inconsistent forecasts. Thus, it is 
critical to select the model appropriately. The existing selection 
methods based on the error measures fail to reveal deep insights 
into the model’s performance, such as the identifcation of salient 
features and the impact of temporal factors (e.g., periods). This 
paper introduces mTSeer, an interactive system for the exploration, 
explanation, and evaluation of multivariate time-series forecast-
ing models. Our system integrates a set of algorithms to steer the 
process, and rich interactions and visualization designs to help in-
terpret the diferences between models in both model and instance 
level. We demonstrate the efectiveness of mTSeer through three 
case studies with two domain experts on real-world data, qualita-
tive interviews with the two experts, and quantitative evaluation 
of the three case studies. 
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1 INTRODUCTION 
Time-series forecasting is the extrapolation of future values of a 
series based on the historical information that is related to that 
series. It is becoming increasingly indispensable as the knowledge 
derived from time series forecasting can provide the industrial and 
scientifc felds with crucial information for their decision-making 
process [43]. In today’s data-driven world, many real-world time 
series generated by applications such as fnance, weather, biology, 
industry demand have multiple variables or attributes. For example, 
gold price forecasting apply RNNs on sequences of multivariate 
data where each dimension represents an individual feature with 
semantic meaning such as infation or deposit rates. Various fore-
casting algorithms have been developed with these multivariate 
time series as input [23]. These methods can be categorized into: 
the classical linear regression methods [10] and non-linear regres-
sion methods [14], and the modern techniques based on machine 
learning and deep neural networks [62]. However, diferent models 
that contain diferent parameter sets and fundamental assumptions 
may be specialized for diferent feature spaces in dataset and ap-
plication domains. In addition, these models often fail to consider 
the characteristics of time-series problems in their model develop-
ment process, such as the periodicity and spikes in the time series 
and the requirement to predict multiple time steps into the future. 
Thus, given a time-series dataset, it is important for domain experts 
to evaluate, compare, and select existing forecasting models in a 
steerable manner using diferent model settings. 

Recent studies have addressed the problem of evaluating multi-
variate forecasting models using various statistical analysis results. 
The results are often represented by accuracy/error measures (e.g., 
the root mean squared error) computed on the testing period of 
the time series. Moreover, the cross-validation method is used for 
evaluating machine learning and other auto-regression forecasting 
methods on the random partitions of the entire dataset [7]. Such 
measurements are helpful and we retain some of them in our work. 
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take the correlations between diferent variables into considera-
tions [13, 59], they still fail to show the relationships between input 
features and output forecasts directly. Second, most of them only 
provide the overall model-level performance comparisons and lack 
the details in the instance level. It is a common requirement for 
users or domain experts to inspect some specifc forecasting results 
to help them understand the model better and make reasonable de-
cisions. Finally, these accuracy measures do not involve the domain 
experts to steer, explore and interpret the models with their in-
sights and domain-knowledge, which in turn facilitates their model 
evaluation and selection by providing related information. 

For these reasons, it is necessary to develop interactive visual-
ization tools that make multivariate time-series forecasting models 
and their evaluations more explainable to domain experts. This 
has driven the development of some visualization systems for time-
series model explanations (e.g., MultiRNNExplorer [54]) and model 
selection (e.g., TiMoVA [8]). However, they have a limited focus 
on specifc forecasting models like RNN, or merely deal with the 
univariate time series [58]. By contrast, the works for more gen-
eral models ([35, 41, 50]) usually focus on the feature importance, 
having no comparison between models. Finally, none of these visu-
alization techniques take the inherent patterns (e.g., periodicity) of 
time series or the anomalous forecasts into account in the model 
implementation and evaluation process. 

To solve these issues, we introduce mTSeer, a visual analytics 
system developed to help domain experts explore and evaluate 
multivariate time-series forecasting models in a steerable and inter-
pretable manner with both model and instance level information. 
Major research contributions include: 

• System. We propose an integrated visual analytics system for 
a user-guided, steerable exploration and evaluation of multi-
variate time-series forecasting models. We formulate the design 
requirements through cooperation with experts in both machine 
learning and visualization. Candidate forecasting models are inte-
grated with periodicity detection and spike detection algorithms 
to make a more reasonable time-series model estimation. The vi-
sualization and interaction designs support the visual exploration 
of models from the overall comparison, the correlation analysis 
to the particular feature importance and instance inspection. 

• Visualization and Interactions. We propose a set of visual-
ization and interaction designs to facilitate users’ evaluation 
of forecasting models in both model level and instance level. 
Specifcally, we combine the stacked bar chart, line chart and a 
responsive tooltip to simultaneously show the forecast results 
and the feature attributions versus time. The diferences between 
models are presented with a line glyph. The variety of parameter 
settings improves the uncertainty explanation of data and models. 
Rich interaction designs and side views are provided to promote 
the model evaluation. 

• Evaluation. The efectiveness of mTSeer is demonstrated in mul-
tiple forms of evaluation. We frst describe how mTSeer works 
through three case studies conducted by two domain experts 
with real-world datasets, and collect feedback from the two ex-
perts after the qualitative expert interviews. For each case study, 
we then conduct a accuracy-based quantitative evaluation of the 

forecasting models’ performance when they are trained in difer-
ent input lengths and predicted with diferent steps ahead. All 
the evaluations validate the efectiveness of mTSeer in evaluating 
model performances on multivariate time-series forecasting. 

2 RELATED WORK 
In this section, we provide an overview of the papers that are most 
related to our work, which includes: techniques for time-series 
forecast and their evaluation, visualizations for time series and 
forecast models. 

2.1 Time-series Forecasting and Evaluation 
Various time-series forecast related techniques have been developed 
in many research communities and application domains for several 
decades, including the classical statistic methods, machine learning 
approaches for time series forecasting and their evaluation methods. 

Time-series Forecasting Techniques. The time-series fore-
casting is aimed to predict future values based on historical data, 
which plays a key role in data-driven decision making in most busi-
ness and medical analysis. The traditional methods can be broadly 
summarized into three categories based on the modeling principles: 
the auto-regression based methods [9, 57], the exponential smooth-
ing (ES) methods [32], and the machine learning and deep learning 
forecasting methods [3, 19, 19, 46]. However, most of them are only 
designed for univariate time-series forecasting, and do not take 
into account other exploitable time series with related attributes 
in the same dataset. Thereby, multivariate time-series forecasting 
models have been developed via extending these traditional models 
[29]. For example, Mukherjee et al. [47] presented the Vector Error 
Correction Model (VECM) to predict the stock market, and Kane et 
al. [30] applied Random Forest (RF) to predict the avian infuenza 
H5N1 outbreaks. More recently, the breakthrough of deep neu-
ral network and their variants have been applied for multivariate 
forecasting, which includes diferent types of Recurrent Neural Net-
works (RNNs) like LSTM [26], the multi-layer perceptron (MLP) as 
an extension of the linear regression models [1], the convolutional 
Neural Networks (CNN) [62] and WaveNet [49]. There are also 
some hybrid methods that combine diferent types of deep learning 
techniques. All of the techniques discussed are not comprehensive 
but represent diferent approaches. Our system implements some 
of the most representative algorithms from diferent categories as 
the baseline algorithms. 

Time-series Forecasting Techniques Evaluation. A variety 
of evaluation methods have been proposed to compare the per-
formance of diferent time-series forecasting models. Tradition-
ally, the accuracy-based methods are used to evaluate the perfor-
mance of timse-series predictors. The most basic method is mean 
squared error (MSE) that measures the average squared diference 
between the actual and predicted temporal values [5, 27]. Such eval-
uation ways have been enhanced and summarized into diferent 
categories: (1) the scale-dependent measures such as the root MSE 
(RMSE) [12, 34, 45] , (2) the percentage errors that overcome scale-
dependency such as the mean absolute percentage error (MAPE) 
[6, 53], and (3) the relative estimation compared with a benchmark 
method like the Theil’s inequality coefcient [17, 40]. In addition 
to the accuracy-based metrics, cross-validation is also popular for 
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evaluating regression and classifcation methods [4]. Furthermore, 
these methods have been improved by taking the characteristics 
of time series into account, such as calculating MSE based on the 
turning points of time series [24], conducting cross-validation with 
stationary time series [15] and blocked subsets [56]. A wider per-
spective considers both the accuracy and the correlation between 
diferent varieties. For example, Carmack et al. [13] presented the 
far casting cross-validation (FCCV) by defning a neighborhood 
radius to remove dependent data in forecasting. E. Toth et al. [59] 
used a correlation coefcient between diferent varieties to conduct 
a multi-step rainfall prediction. A more advanced work derives 
non-parametric risk bounds on the expected inaccuracy of the 
predictions to help select forecasting models [44]. Although these 
methods are able to evaluate diferent multivariate forecasting mod-
els, they fail to provide the explanations of such comparisons and 
assessments, and also lack a deep understanding of the importance 
of diferent features in the forecasting process. Thus, the method 
proposed in our work ofers a more comprehensive and interpreta-
tive evaluation from the overall correlations of diferent models to 
the detailed comparisons in the feature context. 

2.2 Visualization for Temporal Data 
Time-series data visualization has gained momentum in recent 
years due to its wide application in many felds [55]. A variety of 
surveys have summarized the state-of-the-art visualization meth-
ods to display the temporal patterns of time-series data based on 
their feature space. For example, Müller et al. [48] frst discussed the 
general visual representations of time-series data based on whether 
they are time-dependent or not. Afterwards, Aigner et al. [2] sum-
marized the visual methods for analyzing temporal data into three 
aspects based on the characteristics of time series, i.e., ordinal, dis-
crete, and continuous time series. In this paper, we only discuss the 
continuous visualization techniques as they are most relevant to 
our work. 

Specifcally, the visual representation of multivariate time series 
can be categorized into four types [16]: (1) Line charts. This is the 
most common visualization form for time series. For multidimen-
sional time series, collections of line charts can be overlaid in the 
same space to convey global trends or to make local comparisons 
in the data. A popular example is Storyline [33], which usually 
portrays the temporal dynamics of social interactions in a single 
image plane. However, bundling multiple lines in the same space 
will cause visual clutter issues. (2) Stacked graphs. This is another 
approach, where individual line charts are accumulated at each 
point [11]. Projects such as NameVoyager [61] and sense.us [22] 
implemented the stacked graphs with demographic data. Although 
stacked graphs could display the general trend of time series, they 
limit the comparison between individual series and the understand-
ing of space between curves. (3) Horizon charts. It can compare 
individual time series by dividing and layering flled line charts, 
which were frst proposed by Saito et al. [51] and then optimized 
in terms of graphical scalability and perception by Few et al. [31] 
and Heer et al. [21]. But this method cannot provide exact compari-
son when values change drastically; (4) Glyphs-based method. As 
an extension or abstraction of traditional designs for time-series 
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visualization, this method is useful for temporal performance sum-
mary and comparison [18]. For example, MatchPad [39] allows a 
scale-adaptive glyph to analyze real-time sports performance. 

However, none of these visualization techniques are designed for 
time-series forecasting problems that have to be analyzed with both 
the input data and the forecast results. In our work, we enhance 
the line chart with a specifcally ordered stack graphs to display 
the forecasts in the context of input feature importance. 

2.3 Visual Exploration for Forecasting Models 
Visualization has recently been used to help humans in the model 
explanation, evaluation and selection process [20, 52]. On the one 
hand, a variety of visual analytics techniques have been developed 
to help users understand forecasting models. For example, RetainVis 
[37] provided a visual analytics tool to increase the interpretability 
of RNN model and to improve users’ exploration of EMR data in 
the context of prediction tasks. Most relevantly to our work, Mul-
tiRNNExplorer [54] used visualization designs to interpret RNNs 
in high-dimensional time-series forecasts. However, these two sys-
tems only analyzed the internal working mechanism of prediction 
models, which are limited in capability to explain general forecast-
ing models. By contrast, sensitivity analysis methods focus on the 
general relationships between input features and output prediction. 
For example, two recent works, LIME [50] and SHAP [41], calculate 
feature importance from a local perspective. In addition, a more 
comprehensive visualization system, Prospector[36], provided an 
interactive partial dependence diagnostics to estimate the features 
efect to the forecasts. However, the aforementioned visualization 
methods were merely for model explanation rather than model 
evaluation. Thus, on the other hand, other visualization techniques 
have been proposed to facilitate the comparison of forecasting mod-
els. For example, Bögl et al. [8] developed TiMoVA for a detailed 
comparison of ARIMA models based on diferent parameter settings. 
Dong et al. [58] proposed DFSeer to facilitate the model compari-
son and selection for demand forecasting with historical data. The 
problem of these model evaluation systems is that they only deal 
with the univariate time series, and not consider the characteristics 
of time series in the model evaluation process. 

To the best of our knowledge, mTSeer is the frst visual explo-
ration system that compares and evaluates diferent multivariate 
time-series forecasting models in a steerable manner, which takes 
the important concepts like the period and the forecast steps in the 
model implementation process. Rich visualization and interaction 
designs are also introduced to help users interactively interpret and 
evaluate the forecasting models in both model level and instance 
level. 

3 SYSTEM OVERVIEW 
mTSeer was developed as a part of a two-year explainable artif-
cial intelligence project. This project is aimed at developing auto-
mated model discovery systems and integrating visual analytics 
techniques to allow interactive data augmentation and visual model 
selection. We hold weekly meetings with two experts in machine 
learning and visualization for two months, at which a variety of 
design requirements were clarifed and preliminary designs were 
discussed via the iterative user-centered design process. Below we 
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Figure 1: mTSeer system overview and data processing 
pipeline. 

describe the most critical requirements (R1–R4) to guide the design 
of our system. 

R1 Construct models for multivariate time series fore-
casts. The system should provide efective model construc-
tion methods to help users process the large-scale multi-
variate time-series data, as well as set the forecast models 
according to the characteristics of temporal data, such as the 
length of input time series. 

R2 Evaluate models in multifaceted ways. Having a com-
prehensive evaluation of models is essential for model com-
parison and selection. Thus, the system should facilitate the 
model evaluation from the overall summarization (model 
level) of model performance to the detailed analysis at each 
timestamps (instance level), as well as identify the outliers 
that have irregular forecast results. 

R3 Interpret the exploration results from diferent per-
spectives. The visualization should be able to present model 
behaviors with a full range of information including the raw 
data, the critical time steps, the feature importance and the 
correlation between diferent models, to help users under-
stand “when and why" some forecasting models are good or 
not with a given dataset. 

R4 Enable an easy and interactive evaluation. To provide 
efcient exploration and evaluation across models, it requires 
to incorporate fexible interactions that help users quickly 
navigate the input, the forecast results and the interpreta-
tions with substantial details. 

We have designed mTSeer, an interactive model evaluation 
framework of multivariate time-series forecasting models, to meet 
the above requirements. Fig. 1 illustrates the system architecture 
and the model analysis pipeline, which contains four major mod-
ules: (1) the data preprocessing module, (2) the model construction 
module, (3) the analysis module, and (4) the visualization and inter-
action module. 

In particular, in the data preprocessing module, the multivariate 
time series are fltered (e.g., missing values or useless features), 
transformed (e.g., categorical values) and normalized for the fol-
lowing training and testing (R1). The model construction module 
specifes the training and testing periods, the parameters for the 
candidate forecasting models, and then trains the model to get the 
forecasting results (R1). The analysis module computes a range of 
measurements for model evaluation, which consist of the feature 

importance for diferent models at diferent timestamps, the accu-
racy estimation and the variance of forecasts. An outlier detection 
algorithm is also utilized to identify the anomalous forecasts for 
each model (R2, 3). The visualization and interaction module em-
ploys several coordinated views to support a comprehensive visual 
evaluation and interpretation of forecasts in a multi-level context 
(R3). Various interaction designs are created to support a quick and 
responsive exploration of the model performance (R4). All these 
modules work together to form a steerable mechanism that enables 
an efective procedure to promote the information-seeking space. 

4 EVALUATION ON MULTIVARIATE 
TIME-SERIES FORECAST 

In this section, we describe the techniques used in mTSeer to con-
duct a steerable model evaluation on multivariate time series fore-
cast (Fig. 2), which mainly consists of two parts: the model construc-
tion part for input setting and multivariate time-series forecast, and 
the model interpretation part. The detailed procedures are intro-
duced below. 

4.1 Model Description 
The input time series of multivariate forecasting models (Fig. 2(1)) 
is a sequence Xn = {xn−L , xn−(L−1), ..., xn−1, xn }, where L is the 
pre-defned lagged value/input length, xn is the multi-dimensional 
feature vector at time step n with each feature dimension denoted 

fas x ∈ R. The multivariate forecasting model predicts the value n 
at timestamps equal to or greater than n. We make multi-step fore-
casts with output denoted as yn = {xn+1, xn+2, ..., xn+t } (Fig. 2(3)), 
where t is the user-defned forecast steps into the future. The length 
L can be adjusted according to its latent period, which could show 
the infuence of periodicity as a salient temporal factor to the time-
series forecasts. Moreover, the reason to conduct multi-step fore-
casting is based on the practical requirement of most real-world 
time-series forecasting tasks. 

4.1.1 Candidate Models. Five representative time-series forecast-
ing models have been selected as candidate techniques for evalu-
ation (Fig. 2(2)), which covers three typical methods: linear, and 
non-linear regression (statistical) methods, as well as deep learning 
methods. The details are as follows: 

Vector Auto-Regressive Model (VAR) [42] from linear regression 
modeling algorithms, is a stochastic process that each variable 
captures the linear interdependencies of the past values of itself and 
the past values of all the other variables: yn = A1xn + ...+Ap xn−p + 
un ,un ∼ N(0, 

Í 
), where Ai is a time-invariant coefcient matrix u 

and un is a k-vector of error terms. The input length L can be 
adjusted by the lagged order p in VAR. 

Random Forest Model (RF) or Random Decision Forests [25] is 
a non-linear ensemble estimator that fts a multitude of classify-
ing decision trees on various sub-samples of the dataset and out-
puts the mean prediction (regression) of the individual trees to 
improve the predictive accuracy and control over-ftting. However, 
since RF evaluates data points without bringing forward infor-
mation from the past to the present, we need to defne lagging 
variables to bring patterns from the past to be evaluated at the 
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Figure 2: Evaluation pipeline: (1) input settings, (2) multivariate time-series forecast, and (3) results interpretation. 

present. In detail, each input Xn is transformed into a |L × K |-
f0 f1 fK f0 fKvector XnL = [x n−L , ..., x n−L , ..., xn , ..., x ], where K is the n−L , x n 

feature number and L is the lag/length of input. 
Long Short-Term Memory Recurrent Neural Networks (LSTM) is 

one typical variant of RNNs, which predicts time series by inte-
grating three gates and one memory cell to solve the vanishing 
gradient problem in vanilla RNN. In the data preparation process, 
we frame the time series as a supervised learning dataset with each 
input sequence reshaped as a L*K matrix to ft the LSTM model and 
predicted values as a multi-step yn . We defne the LSTM with 50 
neurons in the frst hidden layer and t (step) neuron in the output 
layer. 

Multilayer Perceptron Models (MLP) is a class of feedforward 
artifcial neural network (ANN). It consists of three or more fully 
connected layers of nonlinearly activation nodes and is usually used 
for ftness approximation. However, the multivariate time series is 
unable to be directly used as input for forecasts. Thus, the entire 
time series must be segmented into successive lag observations that 
are fattened into feature vectors as same as the aforementioned 
|L × K |-vector. Similarly, we have a single hidden layer of 50 nodes 
and a t-step output layer. 

Convolutional Neural Networks (CNN) is a regularized version 
of MLP. To reduce the complexity and the overftting problem of 
MLP, it uses the hierarchical pattern in data and generates more 
complex patterns by assembling smaller and simpler patterns. In 
forecasting application, it also needs a data preparation process to 
transform the sequence of observations into multiple examples (|L× 
K |-vector) from which the model can learn. The 1D-convolutional 
(128 neurons) and pooling layers are followed by a dense fully, 
connected layer (50 neurons) that interprets the features extracted 
by the convolutional part of the model. A fatten layer is used 
between the convolutional layers and the dense layer to reduce the 
feature maps to a one-dimensional vector. 

4.1.2 Periodicity Detection. The main motivation for applying the 
periodicity detection is to fnd the best lag/length of input time 
series as periodicity is an important characteristic of time series. 
Thus, we employ a periodicity detection algorithm to estimate the 
latent period in the input time series, providing a “hint” to users 
when choosing the length L of input time series. The algorithm 
can make an accurate periodicity identifcation based on a new 
periodic distance measurement method [60], which is composed 
of two steps: extraction of candidate period and verifcation of 
candidate periods. Specifcally, in the frst step, we calculate the 

power spectrum or periodogram to discover the latent periods k by 
picking the top largest values of the periodogram: 

N − 1 
P(fk/N ) = | |X (fk/N )| |

2 , k = 0, 1...⌈ ⌉, (1)
2 

where X (fk/N ) is the Discrete Fourier Transform of the input time 
series at frequency fk/N . Secondly, a candidate period from the 
periodogram is verifed as a valid period if it lies on a hill (or the 
local maximum) of the AutoCorrelation Function: 

NÕ−11 N − 1 
ACF (τ ) = d(τ ) · d(n + τ ), τ = 0, 1...⌈ ⌉ . (2)

N 2 
n=0 

This is done by calculating the frst derivative using the Savitzky-
Golay flter and fnding where it crosses zero. Finally, we compute 
the frst derivative value as the score for each candidate period. The 
higher the value is, the more possible it is the period of input time 
series. 

4.2 Model Interpretation 
After making time-series forecasts based on diferent models and 
with diferent lagged values/lengths of input time series, we analyze 
and interpret the forecasting results to help users understand the 
model performance and their diferences. Thus, as shown in Fig. 2(3), 
a model interpretation method based on feature importance and an 
anomaly detection algorithm have been employed to explain the 
results. 

Feature Importance. We apply the SHAP [41] values to ana-
lyze the relationship between input feature importance and the 
output forecasting results. SHAP is a classical sensitivity analysis 
method for model-agnostic machine learning interpretation. It uses 
Shapley values from game theory to allocate each feature an opti-
mal importance value for a particular prediction, and the explicit 
defnition is: Õ |S |!(|F | − |S | − 1)! 

φi (x) = [fs∪{i }(x) − fS (x)] (3)
|F |! 

S ⊆F \{i }

where S is a feature subset of all features F , fs∪{i }(x) and fS (x)
represents the model trained with feature i present and withheld, 
respectively. We use SHAP rather than other measurements (LIME, 
DeepLIFT, etc) as SHAP values prove more consistent with human 
intuition [41]. The values can add up to the actual prediction of 
the true model, which is consistent with our motivation in visual 
design to interpret feature importance in the context of the forecast 
results. Moreover, we speed up the computation of Sharply value 
by using approximations (e.g., the shap.kmeans function). 
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Anomalous Spikes Detection. In addition to calculate the fea-
ture importance at each forecast time step, we also want to get 
the deep insights into the forecasting models, such as the model 
performance regarding diferent inputs (stable or spike time series). 
Thus, an unsupervised anomaly scoring (AS) algorithm is developed 
to identify the anomalous spikes in the output forecasts, which is 
defned as: � 

Xn − µn−1 − 3σn−1 
� 

AS = min , 1 , (4)
3σn−1 

where µn−1 and σn−1 denote the mean and variance with respect 
to the residue set Xn = {xn−L , xn−(L−1), ..., xn }. 

5 VISUALIZATION 
In this section, we present the design tasks derived from the discus-
sions with our expert users, a brief summary of the user interface, 
and a detailed description of the visualization designs for each 
component. 

5.1 Design Tasks 
A list of design tasks was settled to guide the visualization designs 
based on the requirements outlined in R1–R4. We have discussed 
with the experts about their expectations when evaluating forecast 
models and the difculties in meeting these expectations with visu-
alization. For instance, it is difcult to extend existing techniques 
to identify salient features among diferent models and to explain 
forecasts which could be dependent on temporal factors of time 
series. Such derived factors are often domain-specifc, requiring 
trials and errors to identify and augment. The problem is further 
aggravated when dealing with multivariate time series that involves 
the explanation of multiple features. The experts usually compare 
models based on the statistical plots with the average prediction 
accuracy and its variant metrics like F1 Score and Recall Rate, which 
lacks in-depth analysis of the model’s performance. In general, they 
desired a tool that can facilitate the exploration, interpretation and 
comparison of multivariate forecast models, helping them in model 
selection in real applications. Guided by these considerations, we 
decided on a list of visualization tasks as follows. 

T1 Show the overview of feature distribution and model 
performances. The visual design should show the general 
distribution of the time series with multi-dimensional fea-
tures to facilitate the initial selection of the training and 
testing dataset. In addition, the system should provide a vi-
sual summary of models’ performance based on the selected 
data and their attributes. 

T2 Interpret models’ temporal patterns in diferent con-
texts. The lack of understanding in the forecast models 
makes them untrustworthy and further limits their extension 
to other domain applications. Thus the visualization should 
be able to present the model’s temporal patterns in a full 
context of the accuracy measurements, the feature impor-
tance, the anomalous results, and the relationships between 
models. Such a schematic representation can help users in 
evaluating models and fnding optimal parameter settings 
for these models. 

T3 Enhance model comparisons in model, instance and 
historical level. Another key to understanding the charac-
teristic of forecast model is the ability to show the diferences 
between diferent models in a temporal context. Hence, the 
system should support model comparisons through intuitive 
representations and efcient interactions in diferent per-
spectives (e.g., the model level vs. the instance level). Also, 
for a specifc model prediction, the feature importance at dif-
ferent historical time steps in the input data is also provided. 

T4 Display the similarity of input instances. In addition to 
displaying the temporal patterns of models, it is also impor-
tant to show the similarity of diferent input time series and 
prediction results. To this end, the system should show the 
clustering of the input instances based on their similarities 
in features, revealing some specifc prediction results with 
unique feature attributions. 

T5 Allow fexible parameter settings of forecast models. 
Users should be allowed to conveniently set the input of 
multivariate time-series forecast models and analysis algo-
rithms with rich interactions and visual cues that indicate 
the infuence of user behaviors. 

T6 Provide easy access to raw multivariate data. Despite 
the signifcance of the model interpretation and evaluation, 
the raw multivariate time series that contain diferent feature 
values are also essential for users to reason their evaluation 
and judgement, which should be easy to be accessed during 
the exploration process. 

5.2 User Interface 
Guided by the above design tasks and the experts’ feedback, we 
designed our user interfaces (UI). As shown in Fig. 3, the UI of 
mTSeer system consists of six views to assist users from model 
construction to model evaluation and reasoning: the data selection 
view (Fig. 3(1)), providing an overview of the raw time series in a 
circular timeline (T1); the parameter view (Fig. 3(2)), allowing the 
adjustment of model parameters and anomaly detection algorithm 
(T5); the model overview (Fig. 3(3)), displaying the general perfor-
mance of candidate models (T1, 3); the inspection view (Fig. 3(4)), 
interpreting and comparing the forecast models via associating the 
temporal forecast results with the feature importance at each times-
tamp, which contains two modes (the other mode is the bar chart 
mode in Fig. 3(7)) (T2, 3, 6); the instance view (Fig. 3(5)), allowing 
users to select the instances of input time series for further anal-
ysis in a multi-dimensional scaling view (T4); the historical view 
(Fig. 3(6)), presenting the feature importance at historical time steps 
of input sequence based on diferent metrics (T3). All the views 
are interactively connected to illustrate the model performance in 
diferent contexts. Diferent color schemes are designed to depict 
the diferent information (Fig. 3(g)). In particular, categorical colors 
are used to represent the features of the input multivariate time 
series. A linear color scheme, ranging from white to blue, is used 
for indicating the extent of the instance anomaly degree in Fig. 3(5) 
or the variance of feature importance in Fig. 3(3) from low to high, 
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Figure 3: The mTSeer system contains six modules: (1) Data Selection View, (2) Parameter View, (3) Model Overview, (4) Inspection 
View in the box mode, (5) Instance View, and (6) Historical View. The Inspection view contains another mode: (7) the bar chart 
mode. Users can switch to diferent visualization modes and show the anomalous forecast results (e) by buttons in (a), retrieve 
the detailed feature importance value via tooltip (b), highlight some instances in (d). (f) is the explanation of the box glyph in 
(4). (g) shows the color schemes used in diferent views. 

while a dichotomous color scheme encodes whether a feature posi-
tively (red) or negatively (blue) afects the prediction results. More 
design details of each view are introduced in the following sections. 

In general, the basic workfow of our system can be summa-
rized into: (1) model construction, (2) model evaluation, and 
(3) instance inspection. 

5.3 Model Construction 
mTSeer contains two views for the construction of forecast models 
before evaluating them: (1) the data selection view displays the raw 
multivariate time series and the anomaly degree at each timestamp; 
(2) the parameter view facilitates the parameter adjustment for the 
forecast models. They provide users a more personalized setting for 
in-depth model evaluation based on their requirements and domain 
knowledge. 

5.3.1 The Data Selection View. The data selection view in Fig. 3(1) 
helps users observe the general distribution of the raw multivariate 
time-series data and then query the data based on the temporal 
patterns of the feature values and anomaly degree. We employ a 
circular timeline from 0° to 360° in this view to save space. In the 
outer ring, each categorical color scheme is used to represent a 
specifc feature attribute that has been normalized in the y-aixs 
(radius). By contrast, there is a black line in the inner circle which 
shows the anomaly degree of data points at each timestamp, pro-
viding additional information for users when selecting data. Users 
can select two segments with irregular feature values or special 
temporal patterns as the training dataset (the preceding one) and 
testing dataset in chronological order. (T1) 

5.3.2 The Parameter View. The parameter view displays a list of 
parameters for setting the forecasting models and the anomaly 
detection algorithm to assist users in evaluating forecasting mod-
els with diverse conditions (Fig. 3(2)). The shaded area along each 
slider reveals the sensitivity intervals when adjusting each parame-
ter. Specifcally, the frst slider is used to change the length/lag of 
input time series of forecasting models. The height of shadow along 
the slider encodes the possibility of a length to be the period, which 
is an important characteristic of time series that might afect the 
forecasting results. The second slider allows users to set the forecast 
steps into the future, the shadow of which encodes the diferences 
in forecasting results when changing the step value to its consecu-
tive one. Finally, there is a slider for adjusting the discrimination 
threshold of anomaly detection logarithm. The shadow encodes the 
number of anomalous forecast results with each threshold. (T5) 

5.4 Model Evaluation 
After setting the model by selecting the input time series and the 
parameters, the system provides three views for model interpreta-
tion and evaluation, namely, the model overview, the inspection view 
and the historical view. 

5.4.1 The Model Overview. The model overview aims at providing 
an overall comparison of diferent forecast models via displaying 
the general performance of each candidate model. As shown in 
Fig. 3(3), we present two types of measurements for each model, 
the Root-mean-square Error (RMSE) and the summarized feature 
importance, to let users make a quick evaluation based on the 
accuracy measurement and interpret the overall model performance 
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with diferent features’ contributions. On the one hand, we use the 
width of the fll rectangle (blue) to encode the RMSE value from 0 
(empty) to 1 (full) that is normalized across all the candidate models. 
The RMSE value for each model is computed based on the same 
testing time series, which is defned as: t n 

v Õ1 
RMSE = {yT +t − д(xT +t , θ̂ )}, 

n 
t =1 

where yT +t is the ground truth, д(·) is the forecasting function, 
XT +t is the input time series, and θ̂  is the estimated parameter based 
on the training dataset. On the other hand, we design a specifc 
glyph to encode the summarized feature contribution to a candidate 
model. The upper part is a bar chart that shows diferent features’ 
importance value, with each categorical color represents one fea-
ture attribute. The importance values are normalized across all the 
models, and the higher a bar goes, the larger the feature importance 
is. Since the importance value for each feature is summarized from 
the whole testing time series that may contain hundreds of data 
points, we thus use a blue circle in the lower half to depict the vari-
ance of importance values for its corresponding feature (bar) above. 
The fll color, ranging from white to blue, is used for indicating the 
variance from small to large. Finally, users are allowed to change 
the listing order of the candidate models via dragging and moving 
the model name in this view, which facilitates the pair-comparison 
of any two models in the following steps. (T1, 3) 

5.4.2 The Inspection View. The inspection view displays a detailed 
model-agnostic explanation of multivariate time-series forecasting 
models by associating the feature importance to the model output 
with the raw time-series information, the forecasting results and 
the ground truth. As shown in Fig. 3(4), this view can be divided 
into three parts: (1) a line chart (Fig. 3(a)) on the top that plots 
the raw testing time series; (2) model explanation plots below that 
depict the detailed interpretation of each candidate model’s perfor-
mance in the temporal context, which can be switched from the 
current box mode to the bar chart mode shown in Fig. 3(7); (3) dif-
line glyphs between two models (Fig. 3(e)) that show the explicit 
diference between two models in terms of feature importance. 
The three parts share the same time-
line. Firstly, the line chart in the top 
is used to provide the raw time series 
context for reference (T6), where difer-
ent feature values are scaled and rep-
resented by the same categorical color 
scheme shown in the legend. Secondly, 
diferent model explanation plots are 
placed in the order consistent with the 
order in the model overview. So users 
can change the order of models to meet 
their requirements for pair comparison. 
In each part, the solid line represents 
the forecasting outputs of the candidate 
model in the testing dataset, and the 
dotted line represents the ground truth. 
Therefore, users can observe the gap between the real value and the 
predicted value at diferent timestamps. The time periods with a 
grey background mean the forecasting results within these periods 

are identifed as anomalies (usually long-term spikes). In addition, 
in each timestamp, we design a “box glyph” (Fig. 3(f)) to facilitate 
the exploration of feature contribution to model output in multifac-
eted contexts. The glyph design is inspired by combining the basic 
line chart representing the evolution of predictions [54, 58] and the 
bar charts showing the quantity of feature importance [41, 50] (T2) 

Glyph Design. This glyph is placed in the y-axis position of the 
forecast value (base value) at each timestamp. Each box in the glyph 
represents one feature. The boxes stacked above the base value 
show features with the negative efect that contribute to pushing 
the forecast value lower, and those stacked under the base value are 
positive features pushing the forecast value higher. A dichotomous 
color scheme is used to show whether the feature contribution is 
positive (red) or negative (blue). The boxes in the upper side are 
ranked in the increasing order of the feature importance values 
(negative) from top to middle, while the boxes in the lower side 
are in the descending order of positive importance values. The 
advantages to using this design mainly contain two aspects: (1) the 
feature importance can be intuitively and seamlessly represented 
based on the forecasting values across time. It also means that if we 
connect the dividing points between the positive (red) and negative 
(blue) boxes at each timestamp, the connecting line (solid line) is 
the forecasting result itself; (2) the more important features are 
aligned closer to the base values. Finally, the users can hover on the 
glyph to retrieve the explicit feature name, feature values (in the 
brackets) and the feature importance values in the tooltip (Fig. 3(b)), 
and the order of features in the tooltip is consistent with the box 
order in the glyph (T6). 

Alternative Design. Several design alternatives for the “box 
glyph” were considered, as shown in Fig. 4. The frst and most 
intuitive one was to use the multi-line chart that contains all the 
feature importance values in a single graph (Fig. 4(a)). Although 
it can show the continuous evolution of one feature’s importance, 
this visualization has two problems: one is the severe visual clutter 
when feature number or time span is large, and the other is the lack 
in revealing the accumulative efect of features at each timestamp. 
Another alternative was the stacked bar charts with the same plac-
ing order as the “box glyph” mentioned above (Fig. 4(b)). But this 
method fails to display the continuous change of a feature because 
the order of diferent features is not fxed at each timestamp. To 
solve this issue, the third one (Fig. 4(c)) was developed by extending 
the second one, where we fxed the order of features across time. 
The height of bar encodes the absolute feature importance value, 
while the negative feature is highlighted with a strike in the middle 
of the corresponding bar. All the three designs are unable to inter-
pret the feature importance in the context of the forecast results. 
In this sense, our design in Fig. 4(d) is superior as it integrates the 
forecast results and also provides the detailed feature-related in-
formation with a tooltip. Finally, after discussing with the experts, 
they thought the third design as useful in some cases when users 
just focus on analyzing the features’ importance and their evolution 
trends. Thus, we integrated the third design in the inspection view 
as the bar chart mode (Fig. 3(7)). Users can click the button in the 
top to switch between these two modes. 

Thirdly, dif-lines between two models display the explicit dif-
ference of feature importance (Fig. 6(b2)). Specifcally, each line 
segment at a timestamp represents one feature. They are encoded 
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with the same categorical color scheme for features and have fxed 
order at each timestamp. The segment with a downward arrow 
shows the descending in importance of its represented feature from 
the top model to the bottom model, whilst the segment with an 
upwards arrow shows the increase in feature importance. The ab-
sence of an arrow means the unchanged feature importance. The 
dif-lines are not shown by default, and users can click at a time 
point to retrieve them. Finally, users can flter out some features in 
the inspection view by clicking the legends at the top (Fig. 3(a)) to 
make a more precise exploration. 

5.4.3 The Historical View. This view (Fig. 3(6)) is designed to show 
the historical feature importance of each attribute for a specifc 
model forecast. Since the feature importance for each model at 
diferent time steps in the inspection view represents an average 
impact of features in the input data, we are also interested in which 
time step in the input time series has a greater impact to the forecast. 
For example, the old data points in the input time series might have 
a larger contribution to the forecast than the most recent data. 
When clicking one column of a model in the inspection view, each 
feature’s historical importance and its trend for this forecast will 
be displayed in an individual line chart, complemented with the 
background area chart showing the row feature value. The x-axis 
represents the timeline of the input sequence before a selected 
forecast, and the y-axis represents the feature importance for the 
line chart or raw feature value for the area chart. (T3) 

5.5 Instance Inspection 
The instance view (Fig. 3(5)) shows the spatial distribution of input 
time-series instances at diferent timestamps using t-Distributed 
Stochastic Neighbor Embedding (t-SNE). The multivariate points 
are scaled into a 2D plane based on their raw feature values (Raw) 
and clustered into subsets exhibiting a certain similarity. Each node 
in this view represents one data point whose fll color encodes its 
anomaly degree calculated by the Local Outlier Factor (LOF). The 
darker the color, the more abnormal it is. In addition, since one data 
point has diferent forecast results from diferent models, we use 
the size of the node to encode the variance of results. The larger it 
goes, the more variant the forecast is. Users can click on a specifc 
node to highlight the corresponding data point simultaneously in 
the inspection view (Fig. 3(d)) for further analysis. Also, a connecting 
line will appear to show the neighboring instances of a selected 
node, starting from the previous point (annotated with a red dot) to 
the next point (annotated with an arrow). Finally, users can select 
other relationships to be projected and analyzed in this view via 
the selection buttons, such as the predicted value vs. ground (P-G) 
value for each model, or the similarity in feature importance (Imp). 
(T4) 

5.6 Interactions 
The following interactions are designed to help with the explo-
ration and evaluation of the multivariate time-series forecast mod-
els. Query and Filtering. Users can query diferent subsets of the 
input time series by brushing the segments in the data selection 
view. They can also flter out some features for a more clear in-
spection by clicking the feature legends in the top of the inspection 
view. Setting Parameters. Users can set models’ input based on 
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Figure 4: Alternative designs for feature importance: (a) multi-
line chart, (b) stacked bar chart, (c) an extended stacked bar 
chart. Our design (d) improves the representation by integrat-
ing the predicted values. 

Figure 5: The accuracy of forecast models under diferent input 
time-series lengths and forecast steps. The plots on the top and 
bottom show the RMSE of diferent models with the data used 
in case 1 and 3, respectively. 

the characteristics of time series, as well the anomaly threshold by 
tuning the sliders in the parameter view. Switching Context. Users 
can switch between diferent visualization modes for the model 
explanation in the inspection view. In the model overview, they can 
switch the position of any two models by dragging and moving 
the container of the model to change the listing order of models in 
the model overview and the inspection view. Zooming and Scaling. 
Three views support zooming for a large set of data items, namely, 
the data selection view, the inspection view and the instance view. 
Tooltips and Highlighting. Tooltips are provided in the inspec-
tion overview to provide the detailed feature information with a bar 
chart design. In addition, the anomalous periods in the forecasting 
results can be highlighted with a grey background by clicking the 
button at the top of the inspection overview. In the instance view, 
when clicking a node, its previous and next point will be connected 
with a line. The corresponding instance will also be highlighted in 
the inspection overview, and vice versa. Model Comparison. Users 
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can click the “box glyph” in the inspection view to show the detailed 
diference between two models with dif-lines. 

6 EVALUATION 
We evaluated the efectiveness of mTSeer in multiple ways from 
the visualization community [28, 38]. First, we describe three case 
studies with two domain expert who had no exposure to our system 
before the case studies on three real-world multivariate time series 
from UCI Machine Learning Repository: (1) Beijing PM2.5 Data 
Set, (2) Metro Interstate Trafc Volume Data Set, and (3) Istanbul 
Stock Exchange. The datasets (1) and (2) have similar attributes 
(meteorological data) as input, but the forecasting targets are difer-
ent. For each case study, we conduct a corresponding quantitative 
evaluation using RMSE changes to display the efect of input time 
series length and forecast steps in predict accuracy. Finally, we 
conduct qualitative expert interviews with the two domain experts 
about their user-experience and feedback to mTSeer. 

Study Set-up and Interview Process. We invited two experts 
who have rich experience in visual analytics, machine learning, and 
time series to conduct the case study in a semi-structured format. 
The one for case study 1 & 2 is a research scientist from a company’s 
visualization group, who is experienced in urban informatics (E1). 
The expert for case study 3 is an algorithm engineer from a start-up, 
and his main work is to develop models for analyzing stock-related 
data (E2). Both of them had no prior knowledge about the data 
used in the case studies and were not collaborators on our project. 
Each interview lasted approximately 1.5 hours, with 30 minutes for 
the introduction of the system and 60 minutes for data exploration 
and model evaluation by the experts themselves using our system. 
Notes and expert feedback were recorded in the process. 

6.1 Case Study I: Beijing PM2.5 Data Set 
In the frst case study, we used a fve-year (2010/01/01 – 2014/12/31), 
hourly sampled time series for pollution (PM2.5) forecasting. The 
dataset includes seven meteorological attributes from Beijing Cap-
ital International Airport, namely, dew point (dew), temperature 
(temp), pressure (press), combined wind direction (win_dir), cu-
mulated wind speed (win_spd), cumulated hours of snow (snow), 
and cumulated hours of rain (rain), and the target is PM2.5 value 
recorded in US Embassy in Beijing. After loading the data into 
mTSeer, E1 started the model construction by frst selecting the 
training and testing data in the data selection view in Fig. 3(1). He 
noticed the overall one-year seasonality revealed by most features 
(e.g., temp), and an anomalous period around the start of 2011 indi-
cated by the anomaly line in the inside circle (T1). So he brushed 
this abnormal period (approx. from Jan. 2 – 5) as testing data and its 
previous one-year time series as training data. Then he set diferent 
parameters in the parameter view (T5). Based on his domain knowl-
edge, he chose to make a one-step forecast as the result would be 
more accurate and useful, and he also preferred to set a short length 
of input time series because he believed the next hour’s PM2.5 
value was most relevant to its previous few hours; thus he tried the 
parameter length with 1 to 4 hours and fnally decided to use 4 due 
to its higher overall accuracy for fve models observed in the model 
overview. 

Then he started the model exploration and evaluation with 
other views. Firstly, as shown in Fig. 6(a1), the RMSE rectangle in the 
model overview informed him that LSTM was the best model based 
on his parameter setting. Also, the bar chart showed that LSTM 
has the most average and least feature contribution, especially 
compared with CNN and MLP, which are the same type of model 
as LSTM. This result attracted E1, and he switched to the inspection 
view for detailed analysis of LSTM and others’ performance (T2-3). 
The frst interesting pattern in this view was the high and unstable 
PM2.5 forecast results for all models from Jan. 2, 6 pm to Jan. 4, 6 
pm (Fig. 6(b4)), compared with the forecasts before and after this 
period. After checking the raw time series in the top, E1 said this 
was caused by the frequently changed wind direction (win_dir, 
pink) and the high dew value (dew, dark green) within this period. 
Next, to fgure out why LSTM is better than models like RF and 
MLP, he identifed two anomalous periods (Mon 2 am – 8 am & 
Mon 1 pm – Tue 2 am) in Fig. 6(b1) where the forecasts (solid line) 
were extremely lower than the ground truth (dotted line) for RF, 
CNN, and MLP but not for LSTM, which leads to the LSTM’s lower 
error. Then the expert dig deeper into these two periods to fnd 
out which features made LSTM better than others. By using the 
tooltip and the dif-lines, he found that within the two periods, 
LSTM had lower feature importance in temperature (orange), wind 
speed (purple) and direction (light green), and higher importance 
in dew (dark green) and pressure (blue) compared with RF and 
MLP (Fig. 6(b2)). These fndings of feature contribution inspired 
the expert that the higher forecast accuracy of LSTM in high PM2.5 
value should credit to the higher dew and pressure contribution. 
Furthermore, E1 also tried the bar chart mode in the inspection 
view and fltered out the rain and temperature attributes because 
of their anomalous high importance in VAR (Fig. 6(b6)). Then the 
results in Fig. 6(b5) clearly and consistently showed that: for models 
(CNN, MLP, RF) that had many forecasts lower than ground truth, 
their dew point and pressure always had large negative importance, 
while for models that were more accurate like LSTM, there were 
no long-term standing features across time. Finally, he also double-
checked the anomalous instances in the instance view (Fig. 6(c1)), 
and noticed they (Fig. 6(b3)) were also located within the anomalous 
periods as mentioned above (T4). 

Quantitative results. We validated how the RMSE changes un-
der diferent lengths of input time series and the number of forecast 
steps. Specifcally, we summarized the RMSE based on a linearly-
growing forecasting steps [1,2,3,4,5,6,7,8,9,10] hours. For the RMSE 
on input time-series length, we test the models with eight sampling 
rates growing near-exponentially: [1,2,4,8,16,25,50,71] hours since 
there is a latent periods (i.e., 71) identifed by our periodicity de-
tection algorithm. The results are shown on the upper Fig. 5 (the 
extremely high values of VAR are not shown in this fgure.) As 
expected that the pollution is more related with its most recent 
weather data, the RMSE shows an overall increasing trend as the 
length increases, but some models (VAR, LSTM and RF) have an 
decreasing trend around 16 and the estimated period 71, which 
proves that the input time-series length (e.g., around period) can af-
fect the forecast accuracy. Additionally, most models present more 
errors as expected when the forecast step increases. Moreover, the 
result shows that LSTM is the best algorithm all the time, which 
also verifes the evaluation results in the case study. 
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Figure 6: mTSeer facilities the exploration of multivariate time-series forecasting models through three levels of analysis: (a) 
model overview, (b) model inspection, and (c) instance analysis. The fgure showcases some exploration results with Beijing 
PM2.5 Data Set. The input is meteorological data and the forecast target is PM2.5 value. (a1) shows that LSTM is the most accu-
rate forecasting model based on RMSE value and has the least feature contribution. Specifcally, LSTM makes fewer forecast 
errors than others within two time periods shown in (b1), and the further analysis indicates a higher importance of dew and 
pressure for LSTM within these two periods by observing the dif-lines in (b2). The bar charts in (b5) also verify this fnding 
because all the models except LSTM have long-term negative feature importance of dew and pressure over time. In general, 
all the models have high and unstable predicted PM2.5 values within the period (b4). The anomalous points discovered in (c1) 
are highlighted in (b3) correspondingly. 

6.2 Case Study II: Metro Interstate Trafc 
Volume Data Set 

E1 continued cooperating with us in the second case study because 
the time series is still related to meteorological data. The forecast 
target is trafc volume, which matches his expertise in urban infor-
matics. This dataset records hourly trafc volume (2012 – 2018) for 
MN DoT ATR station 301, and hourly weather features and holidays 
are included for impacts on trafc volume. In the model construc-
tion step, E1 selected a 100-point period from 2013-09-02 as testing 
data and its previous one-year as the training data. Additionally, 
since the parameter view revealed an interesting 24-hour (i.e., one 
day) period of trafc volume (Fig. 3(2)), the expert decided to set the 
length of the input time series as 24 hours, and the step as 6 hours 
(quarter day) based on his experience. Then he started to make 
model evaluation. Firstly, in the model overview, he dragged the 
model container to re-rank them in an increasing order of RMSE 
value (RF, MLP, LSTM, CNN, VAR) in Fig. 3(3). By observing the bar 
charts of feature importance, he quickly noted that the best model 
RF was the only one taking the temperature (orange) as the domi-
nant feature, while most others took the holiday (dark green) and 
cloud (light green) as the dominant features (T3). Thus, he switched 

to the other views to make a deep evaluation of these models, and 
here are some important fndings summarized in E1’s study: (1) 
the raw time series on the top of the inspection view displayed a 
periodic pattern of feature temperature, which was consistent with 
the ground truth (dotted line) of volume change shown in model ex-
planation plots below (Fig. 3(4)); thus most models showed a similar 
periodic pattern in forecasts (solid line) except MLP. Although MLP 
had the second low RMSE, its performance was not considered as 
good by the expert since most of its predicted results were average 
across time, which makes no sense for a forecasting model. By con-
trast, the forecasts of LSTM ftted to the ground truth at most time, 
but had some signifcant errors in some periods like timestamp 
40 to 50 (Fig. 3(c)), which resulted in its RMSE only ranked third 
in fve models. However, E1 still regarded LSTM as good and a 
detailed discussion about this is described in Sec.6.4 (T2). (2) Mean-
while, the expert tried to fnd more explicit explanations of model 
performances from the perspective of feature importance. So he 
observed the “box glyph”, and found some models like LSTM and 
CNN contained large bars in the “box glyph” across time (Fig. 3(b)). 
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The tooltip fur-
ther showed that 
these models’ 
forecasts were 
signifcantly af-
fected by feature 
cloud and holiday 
(T5). Although 
these features 
led to the good 
performance (e.g., 
around timestamp 
18) when there 
were sudden changes in cloud cover or holiday status in its past 
24 hours, they also caused the bad performance in periods (e.g., 
timestamp 28) when there were no extreme changes in such 
features in the past. The frst ranked algorithm RF, however, was 
more stable since its dominant feature across time is always the 
temperature. The bar chart mode shown in Fig. 3(7) verifed this. (3) 
The VAR was worst in RMSE because it contained an anomalous 
period highlighted with grey background (Fig. 3(e)), where its 
forecasts were signifcantly pushed up by the feature rainfall 
(purple) and led to the huge error in RMSE. Although the raw time 
series showed the sudden presence of rainfall in its past few hours, 
E1 believed the VAR excessively over-weighted the importance of 
rainfall. (4) Finally, E1 also clicked several most abnormal (dark 
blue) points in the instance view (Fig. 3(5)), and the connected lines 
meant that their neighbouring points had little correlation with 
them. This was verifed in the inspection view in Fig. 3(d) as these 
points were spikes where all the models made wrong forecasts. 
(T2-4) 

Quantitative results. Similarly, we tested the relationship be-
tween RMSE and the lengths of input time series, as well as the 
forecasting steps. To save space, we displayed the results in supple-
mentary materials as they are similar to the quantitative evaluation 
results in case study 1. 

6.3 Case Study III: Istanbul Stock Exchange 
Data Set 

In the third case study, the dataset includes returns of Istanbul Stock 
Exchange (ISE) with seven other international index; SP (S&P 500), 
DAX (Germany), FTSE (UK), NIKKEI (Japan), BOVESPA (Brazil), EU 
(MSCE), EM (MSCI), from Jun. 5, 2009 to Feb. 22, 2011. E2 started 
by selecting the training and testing time series and then tried 
many parameter settings. Here we only report one special case 
with the length set as 4 days and the step as 7 days because LSTM 
was worst in this case. The expert thought this might be caused by 
the short input length for LSTM and he wanted to explore more 
about the reasons. After manually ranking the models based on 
the RMSE value, he began to evaluate models with diferent views. 
He frst observed the raw time series on top of Fig. 7 and noticed 
that the seven indexes changed synchronously at most times (T2, 
6). The frst concern of E2 was to fgure out when the forecasts 
went wrong (T2), so he marked the timestamps where most models 
make errors and analyzed them by referring to the raw data. The 
results showed that the wrong forecasts often happened when their 

Figure 7: Model evaluation results with Istanbul Stock Ex-
change Data. (a) The raw time series shows inconsistent 
changes of input data at some timestamps, which leads to 
the signifcant forecast errors in their next few days. (b) 
The dif-lines explains why LSTM is worse than MLP as 
BOVESPA has higher importance for LSTM forecast. (c) The 
historical view shows the spike of NIKKEI at timestamp (a) 
leads to the abnormal larger feature importance than that 
at other timestamps for CNN. 

previous points had inconsistent changes among the seven indexes. 
For example, as shown in Fig. 7(a), before Jul. 16, all the indexes 
had a similar trend except NIKKEI that had a spike at Jul.15, which 
made the wrong forecast on Jul. 16 for all models. The historical 
view (Fig. 7(c)) verifed this fnding in model CNN: the input data of 
NIKKEI had an extreme large feature importance at Jul.15, pushing 
the forecast value at Jul.16 higher than ground value. In addition, he 
wanted to understand why LSTM was worse than others like MLP 
in this case, so he observed the “box glyph” and retrieved the dif-
lines where LSTM made mistakes whilst MLP not. By inspecting 
the dif-lines shown in Fig. 7(b), he found there was only one index 
that always had higher importance in LSTM than MLP – BOVESPA 
(light green). Thus E2 guessed that the other models were better 
because they took little account of BOVESPA in their forecasting 
process. 

Quantitative results. In this experiment, we tested the RMSE 
of diferent models with input length growing exponentially: 
[1,2,4,8,16,24,48], and step linearly growing from 1 to 10 hours. 
No period is detected in this data. As shown in Fig. 5, the general 
RMSE are consistent with the exploration results in this case study, 
where RF is best and LSTM is not good. Moreover, diferent from the 
results in case study 1, the RMSE decreases as the input sequence 
length increases, which makes sense since the exchange rate is 
more related with the long-term impact of past data. 

6.4 User Feedback 
We collected the insightful feedback provided by the two experts 
(E1, E2) and summarized them into three themes. 

Interpretable Model Evaluation. Both experts applauded the 
interpretability of our system in evaluating time-series forecasting 
models. E1 used to take accuracy measures as the major criteria for 
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model evaluation. However, after the case study, he described an 
important insight that “Don’t use the accuracy [RMSE] as the only 
criterion.” The inspection view associating the RMSE with feature 
importance made him understand that “although some models have 
large RMSE, they are caused by a few anomalous points []...] these 
models still have very good performance in general and should be 
selected in our applications.” By contrast, he said that some models 
might have a good overall accuracy because their prediction results 
are very average and “within a safe range”. But such models have 
little practical value, especially when we need to make forecasts 
at critical times. Moreover, E2 stated, “Your system combines a lot 
of information to help users evaluate models [...]such as the raw 
data, feature importance and anomalies.”, and this is indeed one 
goal of designing the system: interpret the exploration results from 
diferent perspectives. 

Visualization and Interaction. Most visualization and inter-
action designs were thought to meet the design tasks. Both experts 
agreed that the model overview and the inspection view are very 
useful and informative. “These [two] views provide a comprehen-
sive explanation and comparison of the forecasting models,” E1 
said, “I know RMSE and feature importance, but I never consider 
to combine them together in visualization design.” E2 regarded the 
the historical view as helpful because “it provides more detailed 
understanding of feature contribution” and he even suggested to 
dig deeper in this direction. In addition, they both commented the 
interaction designs, such as the tooltip and the coordinated high-
lighting as helpful, bringing convenience to retrieve the reference 
information when needed. Finally, both experts mentioned that 
it took a while to fully grasp the “box glyph” design in the the 
inspection view as though it is useful. 

System and Improvements. The experts can adapt well to 
the workfow of our system from model construction to model 
evaluation and other analysis. E1 liked the parameter view as “the 
shadow gives me the references when selecting parameters.” How-
ever, both of them suggested that more automatic analysis is an 
interesting direction. For example, “Although your system has au-
tomated anomaly analysis for time series, ” E1 suggested, “More 
intelligent [time-series] analytic methods can be integrated into 
the system to provide more specifc temporal patterns.”, which is 
indeed helpful to improve the understanding of the forecasting re-
sults and the raw time series. E2 also suggested that our system can 
recommend some input data and optimal parameter settings at the 
beginning to alleviate the eforts in adjusting parameters. Although 
it is difcult to fnd unifed methods that could deal with diferent 
types of time series, we believe that more automated analysis in 
our system will help users perform their tasks more efectively. 

7 DISCUSSION 
In this section, we discuss the high-level synthetics, the implications, 
and the limitations of our system designs. 

Contributions with respect to previous work. According to 
the survey of related work, the line chart-based visualization de-
signs [16] are still the basic and most intuitive method to tackle 
time-series (TS) model evaluation, especially for univariate time 
series [8, 58]. However, it is more challenging to deal with the 
multivariate TS model as the univariate model does not need to 
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compare feature importance, which is an essential model-agnostic 
method to interpret forecasting results based on input attributions. 
Thereby, we investigate the visualization designs for feature impor-
tance [50], preserve their basic format (bar chart), and change their 
layout to make the feature importance be interpreted along with 
the prediction results. We also integrate some additional tooltips 
and views to provide a more comprehensive understanding. Specif-
ically, the design of the “push up/push down” feature importance 
glyph is a combination of the line chart representing the predict-
ing value and the bar chart representing the feature importance. 
The reason to introduce the “push up/push down” concept comes 
from the theoretical background of SHAP model [41] where the ex-
pected prediction is attributed to the change of each feature when 
conditioning on that feature. Since there are positive and nega-
tive changes (importances) for diferent features, we thus adopt 
the “up/down” concept to show the positive/negative changes that 
push the expected predicted value higher/lower. By associating 
the feature importance at each forecasting step, the infuences of 
diferent features can be efciently interpreted with more semantic 
meanings. The lessons that incorporating the theoretic defnitions 
of model explanation methods and the characteristics of input data 
into the basic visualization forms can be used in designing other 
visual representations of explainable machine learning models. 

Extension to other forecasting model interpretations. Al-
though this work focuses on the model evaluation on multivariate 
time-series forecast, the interactive framework we proposed can 
be widely applicable. The high-level synthesis of building the sys-
tem can be summarized into the following points: (1) the system 
pipeline as shown in Fig. 1 provides a steerable evaluation method 
for integrating model construction and analysis process with visual-
ization designs, which can be extended to other model evaluations 
related with time series or machine learning. (2) The workfow of 
the visualization interface should be generally consistent with the 
system pipeline, such as the major model construction and model 
evaluation modules designed in our interface. (3) To solve time-
series problems, we have to pay more attention to the temporal 
patterns and issues that are inherent characteristics in the data, 
including but not limited to the length and period discussed in our 
work. (4) There are some challenges remained to develop the next 
system of this type. Although our system supports a number of 
parameters, our evaluation with experts identifed a larger parame-
ter space that are valuable topics for future work. For example, the 
input can be selected by considering more features like the trend 
of time series, the correlations between diferent features. A larger 
number of candidate models and their hyperparameters is also an 
interesting direction. Finally, the instance-level evaluation can be 
expanded in both analytic methods and visualization designs. 

Limitations. Based on the feedback of our case study and ex-
pert interviews, we have identifed certain limitations of mTSeer. 
First, the paper only considers about 10 features in the forecasting, 
while many real-world applications may involve tens to thousand 
features, which may lead to a serious visual clutter with the current 
visualization design. Although we can mitigate the scalability issue 
by only showing the most important or interesting features for 
each forecast and allow users to zoom in to get more detailed expla-
nations, there is information about other features omitted from the 
design. Therefore, we believe that improving the design, especially 
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the “box” glyph in the inspection view will make the system more 
practical. Second, although mTSeer has a good performance in 
comparing diferent models under the same condition, it is limited 
in comparing the same model with diferent parameter settings. 
Preserving the exploration results at diferent iterations and then 
retrieve the historical results later for a specifc model is a potential 
solution. 

8 CONCLUSION AND FUTURE WORK 
We have presented an interactive model exploration system, mT-
Seer, that enables expert users to evaluate the performance of difer-
ent models on multivariate time-series forecasts based on a model-
agnostic explanation method. The system supports the evaluation 
process at diferent levels by integrating the feature importance, 
some time-series analytic algorithms, and a variety of coordinated 
contextual views and interaction designs for model interpretation. 
We demonstrated the efectiveness of mTSeer through three case 
studies using real-world time series, a corresponding quantitative 
evaluation on model performance, and follow-up interviews with 
domain experts. These results are promising, though there are sev-
eral interesting directions for future work. We plan to add more 
automatic methods for multivariate time-series analysis in our cur-
rent system to improve further the reasoning of forecasting results, 
as well as the efciency of user exploration. Moreover, we intend 
to make mTSeer an active-learning system that can dynamically 
update the evaluation results of models based on human feedback 
in the exploration process. Finally, we will conduct a formal user 
study to demonstrate the usability of diferent views in our system. 
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